Eoq
Illustration 2.1
Calculate the economic order quantity for material M. The following details are furnished:
- Annual usage = 90,000 units
- Buying cost per order = Rs 10
- Cost of carrying inventory = 10% of cost
- Cost per unit = Rs 50
Solution:
The formula for EOQ is:
$$ EOQ = \sqrt{\frac{2AB}{CS}} $$
Where:
- ( A ) = Annual consumption
- ( B ) = Buying Cost
- ( C ) = Cost per unit
- ( S ) = Storage/Carrying Cost
Calculating EOQ:
$$ EOQ = \sqrt{\frac{2 \times 90,000 \times 10}{50 \times 10%}} $$
$$ EOQ = \sqrt{\frac{2 \times 90,000 \times 10}{5}} $$
$$ EOQ = \sqrt{360,000} $$
$$ EOQ = 600 \text{ units} $$
Illustration 2.13
Given,
- Cost of placing order or Buying Cost (B) = Rs 100
- Purchase price of raw material (C) = Rs 10
- Re-order period = 4-8 weeks
- Consumption of Raw materials = 100-450 Kg per week
- Annual consumption (A) = 275 x 52 = 14,300 Kg
- Avg consumption of RM = 275 Kg
- Carrying cost (S) = 20% p.a.
Calculate:
i) Re-order quantity or EOQ
$$ \text{EOQ} = \sqrt{\frac{2AB}{CS}} $$
$$ \text{EOQ} = \sqrt{\frac{2 \times 14,300 \times 100}{10 \times 20%}} $$
$$ \text{EOQ} = \sqrt{\frac{2 \times 14,300 \times 100}{2}} $$
$$ \text{EOQ} = \sqrt{1,430,000} $$
$$ \text{EOQ} = 1195.82 \text{ or } 1196 \text{ Kgs (approx.)} $$
ii) Re-order Level
$$ \text{Re-order Level} = \text{Maximum consumption} \times \text{Maximum re-order period} $$
$$ \text{Re-order Level} = 450 \times 8 $$
$$ \text{Re-order Level} = 3600 \text{ Kgs} $$
Illustration 2.3
Given,
- Monthly consumption = 2,500 units
- Annual consumption (A) = 2,500 x 12 = 30,000 units
- Cost of placing order or Buying cost (B) = Rs 150
- Cost per unit (C) = Rs 20
- Re-order period = 4-8 weeks
- Minimum consumption of RM = 100 units
- Avg consumption of RM = 275 units
- Carrying cost (S) = 20% p.a.
Calculate:
i) Re-order Quantity or EOQ
$$ \text{EOQ} = \sqrt{\frac{2AB}{CS}} $$
$$ \text{EOQ} = \sqrt{\frac{2 \times 30,000 \times 150}{20 \times 20%}} $$
$$ \text{EOQ} = \sqrt{\frac{2 \times 30,000 \times 150}{4}} $$
$$ \text{EOQ} = \sqrt{2,250,000} $$
$$ \text{EOQ} = 1500 \text{ units} $$
ii) Re-order level
$$ \text{Re-order Level} = \text{Maximum consumption} \times \text{Maximum level} $$
Calculate the average consumption to find the maximum level:
$$ \text{Avg Consumption} = \frac{\text{Minimum level} + \text{Maximum level}}{2} $$
$$ 275 = 100 + \frac{\text{Maximum level}}{2} $$
$$ 550 - 100 = \text{Maximum level} $$
$$ \text{Maximum level} = 450 \text{ Kgs} $$
Now calculate the Re-order Level:
$$ \text{Re-order Level} = 450 \times 8 $$
$$ \text{Re-order Level} = 3600 \text{ Kgs} $$
Illustration 2.5
Given,
- Monthly consumption = 1500 units
- Annual consumption (A) = 1500 x 12 = 18,000 units
- Cost per order or Buying cost (B) = Rs 150
- Cost per unit (C) = Rs 27
- Carrying cost (S) = 20%
Calculate EOQ:
$$ \text{EOQ} = \sqrt{\frac{2AB}{CS}} $$
$$ \text{EOQ} = \sqrt{\frac{2 \times 18,000 \times 150}{27 \times 20%}} $$
$$ \text{EOQ} = \sqrt{\frac{2 \times 18
,000 \times 150}{5.4}} $$
$$ \text{EOQ} = \sqrt{1,000,000} $$
$$ \text{EOQ} = 1000 \text{ units} $$
Calculate the number of orders per year:
$$ \text{Number of Orders} = \frac{\text{Annual consumption}}{\text{EOQ}} $$
$$ \text{Number of Orders} = \frac{18,000}{1000} $$
$$ \text{Number of Orders} = 18 $$
No Comments